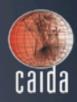


Leveraging the Science and Technology of Internet Mapping for Homeland Security

Young Hyun, Ken Keys, Amogh Dhamdhere, Bradley Huffaker, Josh Polterock, Marina Fomenkov, Dima Krioukov, Matthew Luckie, and kc claffy

> CAIDA/UCSD DHS S&T N66001-08-C-2029 9 Oct 2012



Objective: to improve DHS' situational awareness and understanding of the structure, dynamics and vulnerabilities of the physical and logical topologies of the global Internet.

Solution: to develop and implement new measurement and data collection technologies and infrastructure.

Macroscopic insight into the global Internet infrastructure...

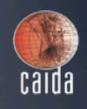
Technical Approach

- Integrated six strategic Internet measurement and analysis capabilities:
 - 1. New architecture for continuous topology measurements (Archipelago, or "Ark")
 - 2. Topology analysis techniques, e.g. IP alias resolution
 - 3. Dual router- and AS-level graphs
 - 4. AS taxonomy and relationships
 - 5. Geolocation of IP resources
 - 6. Graph visualization

http://www.caida.org/funding/cybersecurity/

Technical Transfer Approach

- Integrated strategic measurement & analysis capabilities:
 - 1. Ark Measurement platform: software, data, access
 - 2. Topology analysis: software, data kits, papers
 - 3. Dual router- and AS-level graphs: software, viz
 - 4. AS taxonomy and relationships: published algorithms, interactive web service (AS Rank)
 - 5. Geolocation of IP resources: comparison report
 - 6. Graph visualization: part of AS Rank web service


[all software GPL or UCSD license (no patents); UCSD supports commercial license.]

Benefits to DHS S&T

- Improve critical national capabilities:
 - situational awareness for homeland cybersecurity purposes
 - Internet measurement, analysis, and inference techniques
 - topology mapping: annotated AS+router graphs
 - geolocation technology assessment
- Address network science crisis:
 - flexibility in measurement methods
 - spend less time on non-research activities
 - rapid prototyping, high-level programming model

- Launched 12 Sept 2007 w/ 8 monitors
- •60 active IPv4 probers (July 2012)
 - 17 in US
- •28 active IPv6 probers
- •31 countries
- Support for meta-data management
- Collaborators run vetted measurements on security– hardened platform
- Publish statistics and analysis of views from individual monitors

Ark monitor locations

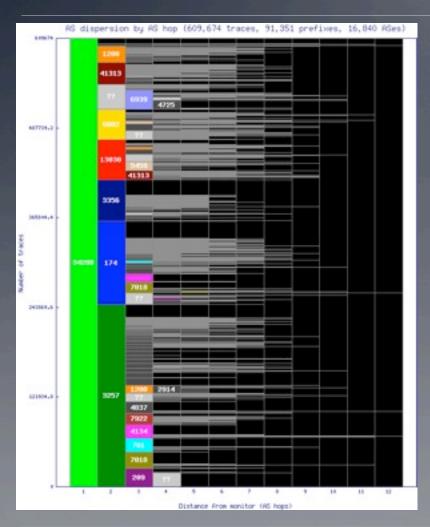
http://www.caida.org/projects/ark/

Ark Infrastructure

- Archipelago provides:
 - a powerful, globally distributed measurement infrastructure connected via the Internet to a central server at CAIDA
 - resource coordination using the Marinda tuple space
 - scalable system management
 - versatile and efficient measurement methods
 - flexible scheduling, data transfer, indexing, and archival

An environment for easy development and rapid prototyping of experiments.

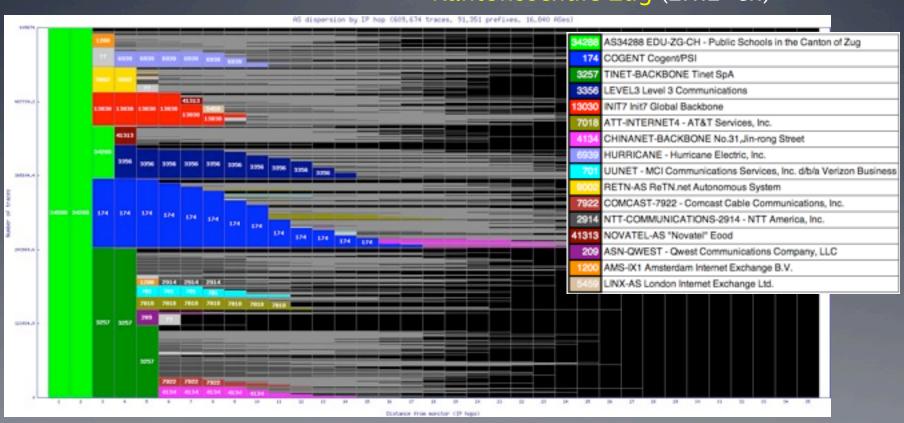
Data from Infrastructure


- IPv4 topology data
 - 10.1 TB data served by PREDICT, data.caida.org
 - Sep 2007 to June 2012 (58 months)
 - 17 B traceroutes; 1850+K cycles
 - Per month:~431M traceroutes; ~175 GB/month
 - Key input to, e.g., AS links and alias resolution
 - Each team collects traces from 10.1 million /24s
- IPv6 topology data
- Supporting software: mper, Marinda, MIDAR, kapar

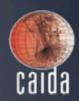
Archipelago Monitor

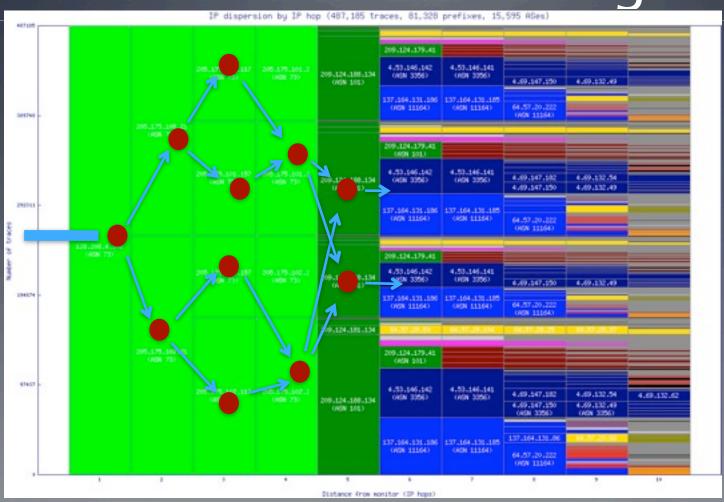
- Per-monitor analysis of IPv4 topology data http://www.caida.org/projects/ark/statistics/
- Statistics aggregated across all monitors
 - AS path length distributions
 - Integrated RTTs
- Statistics from each monitor
 - Median RTT per country and US state (geographic map)
 - AS hop dispersion graphs (by AS hop and IP hop)
 - IP hop dispersion graphs
 - Distribution of path lengths (IP and AS)
 - RTT distribution (CCDF and quartiles vs hop distance)
 - RTT vs geographic distance

AS Dispersion by AS Hop


Kantonsschule Zug (zrh2-ch)

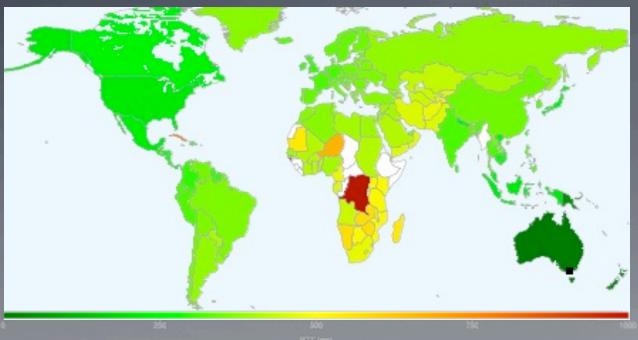
34288	AS34288 EDU-ZG-CH - Public Schools in the Canton of Zug						
3257	TINET-BACKBONE Tinet SpA						
174	COGENT Cogent/PSI						
3356	LEVEL3 Level 3 Communications						
13030	INIT7 Init7 Global Backbone						
41313	NOVATEL-AS "Novatel" Eood						
9002	RETN-AS ReTN.net Autonomous System						
7018	ATT-INTERNET4 - AT&T Services, Inc.						
1200	AMS-IX1 Amsterdam Internet Exchange B.V.						
4134	CHINANET-BACKBONE No.31, Jin-rong Street						
209	ASN-QWEST - Qwest Communications Company, LLC						
6939	HURRICANE - Hurricane Electric, Inc.						
701	UUNET - MCI Communications Services, Inc. d/b/a Verizon Business						
5459	LINX-AS London Internet Exchange Ltd.						
7922	COMCAST-7922 - Comcast Cable Communications, Inc.						
4837	CHINA169-BACKBONE CNCGROUP China169 Backbone						
2914	NTT-COMMUNICATIONS-2914 - NTT America, Inc.						
4725	ODN SOFTBANK TELECOM Corp.						



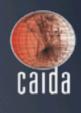

AS Dispersion by IP Hop

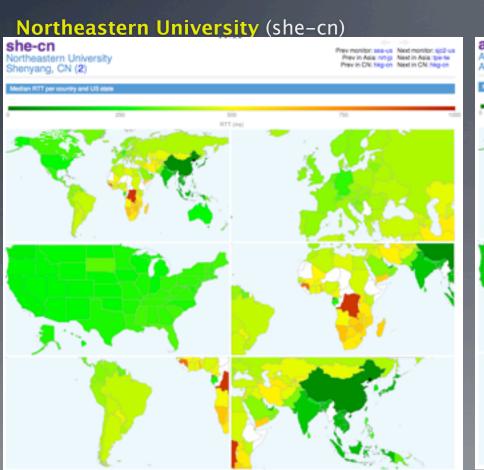
Kantonsschule Zug (zrh2-ch)

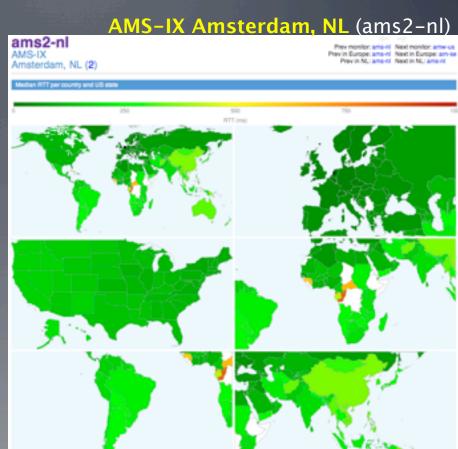
AS Dispersion by IP Hop: shows load balancing



Median RTT to Destination Countries

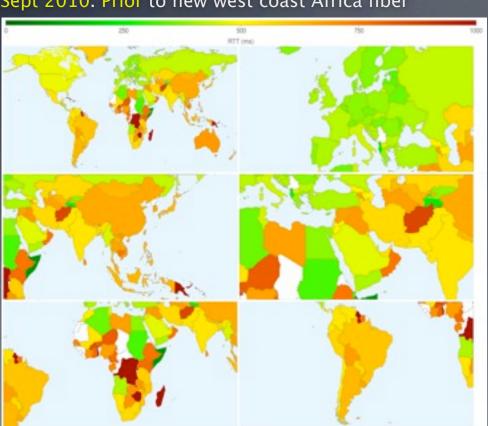


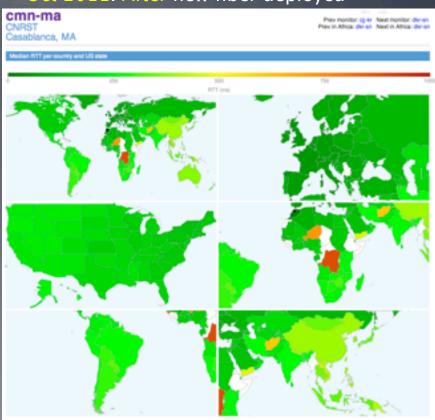

- RTT plotted by country
 - Geolocate destinations with Netacuity (MaxMind Lite for public release)
 - Color each country by median RTT destinations



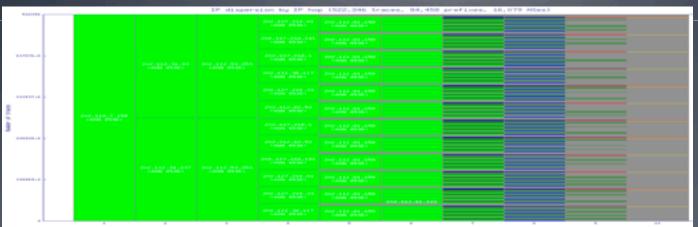
University of Melbourne (mel-au)

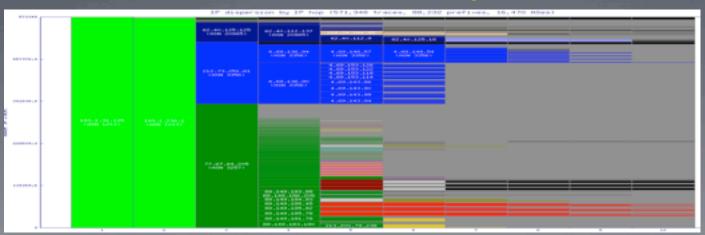
Median RTT to Destination Countries




Median RTT to Destination Countries

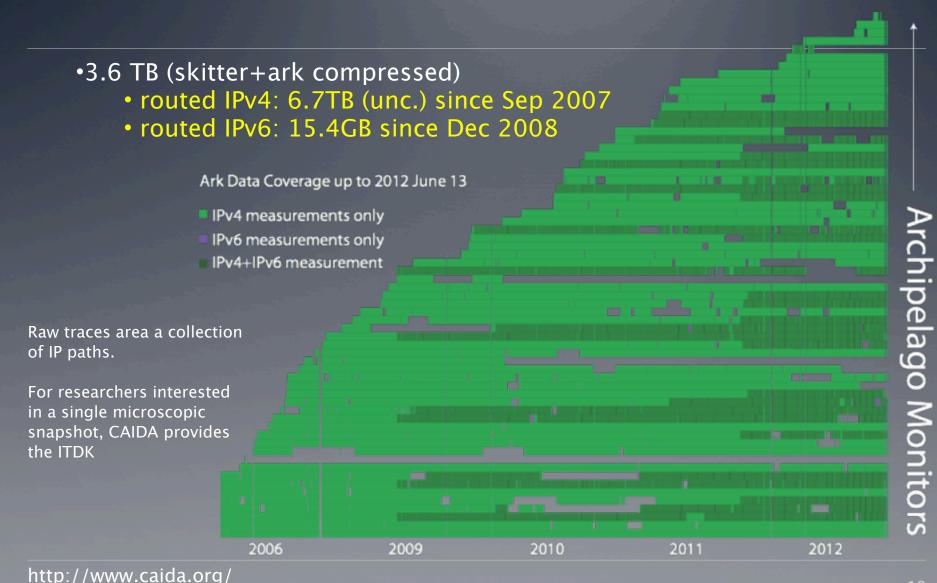
Sept 2010. Prior to new west coast Africa fiber


Oct 2011. After new fiber deployed


CNRST Casablanca, Morocco (cmn-ma)

IP Path Dispersion (by IP Hop)

Chinese monitor: shows IP load balancing over many hops.



Irish monitor: shows fewer IP hops to other ASes.

Ark Topology Measurement

- Ark continuously gathers the largest set of IPv4 and IPv6 topology data made available to academic researchers and government agencies.
- From Sep 2007 through June 2012, we have collected more than 17 Billion traces (6.7 TB uncompressed, 2.1 TB compressed).

Topology Measurement History

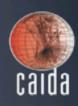
Tuesday, October 9, 12

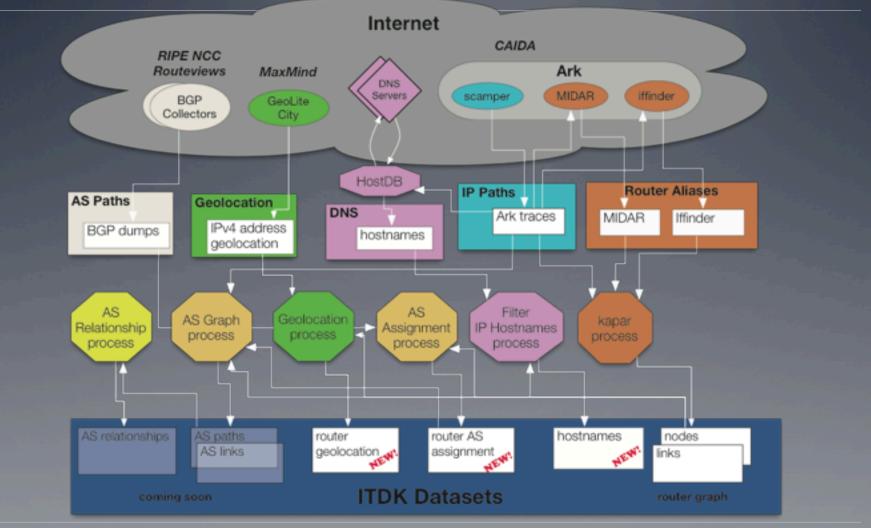
Topology Datasets

- 1. IPv4 Routed /24: topology probes to each /24, continuously
- 2. IPv4 Routed /24 DNS Names: DNS annotations, also capture raw DNS query/response traffic
- 3. IPv6 Topology: topology probes to each routed IPv6 prefix
- 4. Internet Topology Data Kit (ITDK): curated IPv4 data
- 5. IPv4 Routed /24 AS Links: AS adjacencies
- **6.** AS Relationships: inferred AS business relationships

http://www.caida.org/data/

IPv4 Routed /24 Topology


- ongoing large-scale topology measurements
- ICMP Paris traceroute to every routed /24 (10.1M)
 - ~60% of total IPv4 space (per Aug 2012 Route Views)
 - probing rate = 100 probes per second
- running scamper probing tool
- dynamically assign measurements to teams of monitors
 - 3 teams active, 18–21 members/team
 - a cycle through every routed /24 takes 2–3 days
 - each /24 is probed once per cycle



IPv6 Topology

- ongoing large-scale topology measurements
- Ark monitors continuously probe BGP-announced prefixes /48 or shorter
 - 10,269 routed prefixes as of Sept 2012
- Each monitor probes a single random destination in each prefix using scamper

Internet Topology Data Kit Process



Internet Topology Data Kit

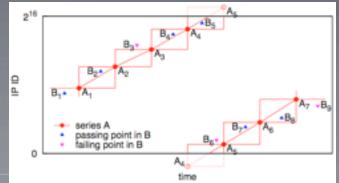
- Derived from two weeks of traceroute data probing IPv4 addresses.
- Last ITDK just posted on www.caida.org (July 2012)
- Two router-level topologies
 - 1) Optimized for accuracy: MIDAR+iffinder highest confidence aliases with low false positives.
 - 2) Optimized for completeness: MIDAR+iffinder+kapar more alias coverage, false positives (inflating routers)
- Data files: routers, links, router-to-AS mappings, router geolocations, DNS lookups of IP addresses

Insights Enabled

- Probing technique performance comparison (w/ .NZ) M. Luckie, A. Dhamdhere, k. claffy, and D. Murrell, "Measured Impact of Crooked Traceroute", ACM SIGCOMM (CCR), 2011.
- Vulnerability assessment: ingress filtering (w/ NPS) R. Beverly, A. Berger, Y. Hyun, and k. claffy, "Understanding the Efficacy of Deployed Internet Source Address Validation Filtering", IMC 2009.
- Internet topology mapping: IP alias resolution
 - Compare accuracy of alias resolution techniques at Internet scale
 - Enhancements: (APAR++) [CCR 2010], MIDAR [TON 2012]
 - Combine techniques (iffinder, kapar, ally, MIDAR) to improve overall accuracy
 - While others still saying it's impossible [AMS2009]
 - Daunting challenge as always: remains validation

Internet-scale IP Router Alias Resolution

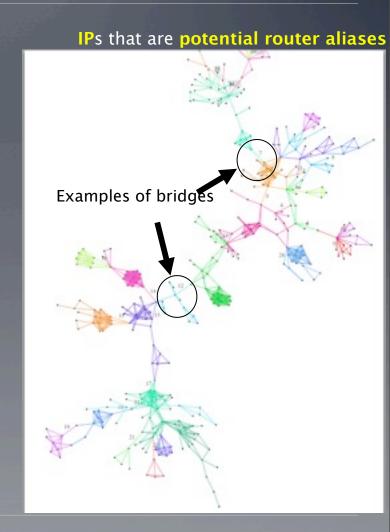
- Goal: collapse observed interfaces into routers
- Earlier efforts at CAIDA: iffinder, kapar (APAR++)
- Most recent approach: MIDAR (inspired by RadarGun)
 - Two interfaces on same router respond in similar way
 - IP ID values in responses: fingerprints to find aliases
 - IP ID: 16-bit header field supporting frag&reassembly
 - Two interfaces on same router probed closely in time will return similar IP ID values: over time, similar time-series velocity.
- Architecture paper to appear in TON2012


MIDAR Approach



http://www.caida.org/tools/measurement/midar/

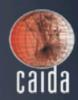
- Monotonic ID-based Alias Resolution (MIDAR) is our extension of the RadarGun approach:
 - Monotonic Bounds Test: for two addresses to be aliases, their combined IP ID time series must be monotonic
 - Sliding window for scalable probing
 - 4 probing methods: TCP, UDP, ICMP, "indirect" (TTL expired)
 - Multiple monitors


IP ID over time

e

- Potential alias set found in Discovery stage
- Testing pair-wise not scalable, necessary, or always possible.
- •Instead probe subsets [colors in graph], such that most addresses belong to only 1 subset
- Probe a subset in parallel
- Efficiently covers all pairs
- Reduces chance of rate limiting

MIDAR Results


	2010-01	2010-04	2010-07	2011-04	2011-10
Input address Monotonic address Possible pairs	1.12 M 0.99 M 486 G	1.50 M 1.20 M 724 G	1.90 M 1.44 M 1038 G	2.32 M 1.87 M 1754 G	2.19 M 1.83 M 1676 G
Shared pairs after Discovery stage	1.63 M	4.00 M	5.49 M	6.83 M	7.00 M
Final Results •Shared pairs •Routers •Addresses on routers	0.433 M 69 k 189 k	1.36 M 108 k 383 k	1.67 M 121 k 426 k	2.49 M 125 k 413 k	2.68 M 118 k 403 k

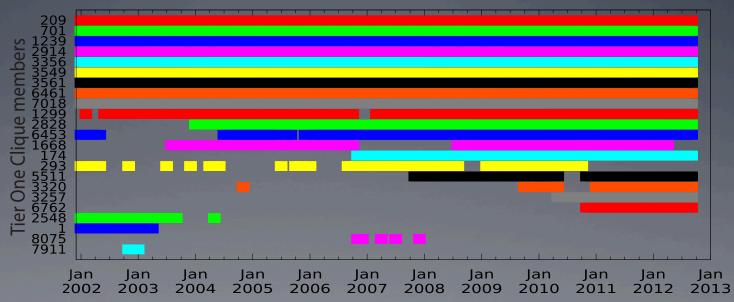
- We have continually improved MIDAR over time:
 - increasing input size of the graph; and
 - improving accuracy and effectiveness of methods.

Internet Topology Data Comparison

- Topology maps needed to analyze or model Internet structure
 - many studies use inconsistent, incomplete, or undocumented sources
 - undermines integrity of analysis results
 - objective: enable informed selection of topology datasets
- Approach: systematically compare best available data
 - characterizing topology at three granularities:
 - IP address (interface), router, Autonomous System (AS)
 - most comprehensive study: sources, metrics, methods, results
 - http://www.caida.org/research/topology/topo_comparison/

AS Rank

- metric/indicator of influence over the global Internet interdomain routing system
- applications to: Internet science/modeling, infrastructure robustness/protection, public policy
- based on inferred economics of AS business relationships using data from public BGP tables
- orders by "customer cone": number of IP prefixes advertised by each AS, by its customer ASes, by their customer ASes, and so on


http://as-rank.caida.org/

Top Tier AS clique

 Largest set of full meshed, clique, ASes from the top 40 ASes by degree

Top Tier Ases clique members over time

AS Rank: screen shot

AS Ranking Org Ranking Information for a single AS Information for a single Org Background

AS Ranking Help

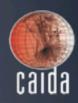
Top 10 ranked AS by customer cone

Level 3

ook up		umber or name	Search ASes, sorted by nur		es in custom		tupdate			
AS	S AS AS name Org name customer cone						<u> </u>	AS		
rank				Numbe	er of		Percentages	of all	degree	
				ASes	IPv4 Prefixes	IPv4 Addresses	ASes	IPv4 Prefixes	IPv4 Addresses	
1	3356	LEVEL3	Level 3 Communications, Inc.	29,037	291,344	1,456,474,500	70%	69%	56%	3318
2	<u>3549</u>	LVLT-3549	Level 3 Communications, Inc.	25,105	260,300	928,688,621	60%	62%	36%	1499
3	1299	TELIANET	TeliaNet Global Network	21,887	217,829	933,429,605	52%	52%	36%	684
4	<u>174</u>	COGENT-174	Cogent Communications	21,206	215,777	849,203,950	51%	51%	33%	3539
5	<u>3257</u>	TINET-BACK	Tinet Spa	18,211	206,207	796,599,260	44%	49%	31%	884
6	<u>2914</u>	NTT-COMMUN	NTT America, Inc.	16,812	190,764	787,647,574	40%	45%	30%	791
7	<u>701</u>	<u>UUNET</u>	MCI WorldCom	14,781	188,837	879,888,016	35%	45%	34%	1812
8	1239	SPRINTLINK	U.S. Sprint	14,275	166,089	1,077,770,948	34%	39%	42%	969
9	<u>6762</u>	SEABONE-NET	Info-tel Communication S.r.l.	12,907	156,342	588,009,687	31%	37%	23%	264
10	<u>6453</u>	AS6453	TATA Communications formerly VSNL is Leading ISP	11,450	150,440	630,628,770	27%	36%	24%	549
data	sources									
		database 2012.00	6.25			netacuity				
_	nization logy		4.01 6.01, 2012.06.02, 20			AFRINIC, APNIC			c06, rrc07, rrc10, r	

AS Rank (cont)

 Tabular views of inferred ISP info, rank, degree, customer cone size, customers, peers, and providers.



Ranking

neighbor			type	projected peering: cone size (% of AS 1299's original cone size)		projected peering: cone size ratio	AS degree	
AS rank	AS	AS name	Org name		of neighbor AS	of AS 1299		
352	3301	TELIANET-S	TellaNet Global Network	++ sibling	0.26%	99%	0.26	66
26818	31080	02-AS	TellaNet Global Network	++ sibling	0.00%	100%	0.00	5
1	3356	LEVEL3	Level 3 Communications, Inc.	peer	132%	100%	75.38	3,318
2	3549	LVLT-3549	Level 3 Communications, Inc.	peer	114%	100%	87.18	1,499
4	174	COGENT-174	Cogent Communications	++ peer	96%	100%	96.89	3,539
5	3257	TINET-BACK	Tinet Spa	peer	83%	100%	83.20	884
6	2914	NTT-COMMUN	NTT America, Inc.	** peer	76%	100%	76.81	791
7	701	UUNET	MCI WorldCom	peer	67%	100%	67.53	1,812
8	1239	SPRINTLINK	U.S. Sprint	** peer	65%	100%	65.22	909
9	6762	SEABONE-NET	Info tel Communication 8.11.	peer	58%	100%	58.97	264

Customers, providers, and peers

	neighbor				
AS rank	AS	AS name	Org name		
352	3301	TELIANET-S	TeliaNet Global Network	↔ sibling	
26818	31080	O2-AS	TeliaNet Global Network	sibling	
1	3356	LEVEL3	Level 3 Communications, Inc.	↔ peer	
2	3549	LVLT-3549	Level 3 Communications, Inc.	++ peer	
4	174	COGENT-174	Cogent Communications	↔ peer	
5	3257	TINET-BACK	Tinet Spa	↔ peer	
6	2914	NTT-COMMUN	NTT America, Inc.	↔ peer	
7	701	UUNET	MCI WorldCom	↔ peer	
8	1239	SPRINTLINK	U.S. Sprint	↔ peer	
9	6762	SEABONE-NET	Info-tel Communication S.r.I.	↔ peer	

AS Rank Validation

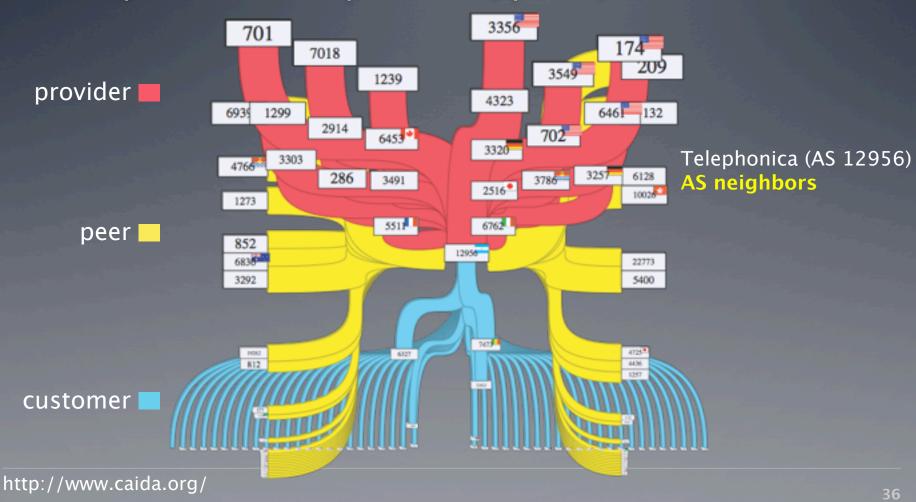
Interface to provide corrections to relationships

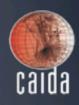
relationship correction page


rank	neighbor AS	neighbor name	type	correction
3	<u>3549</u>	Global Crossing Ltd.	↔ peer	provider ‡
4	<u>6461</u>	Metromedia Fiber Net	† provider	•
5	3257	Tinet SpA	† provider	peer ‡
6	<u>1239</u>	Sprint	↔ peer	•
7	2914	NTT America, Inc.	↔ peer	•
8	<u>174</u>	Cogent/PSI	↔ peer	•
10	<u>7018</u>	AT&T Services, Inc.	↔ peer	•
11	3320	Deutsche Telekom AG	↔ peer	•
12	<u>6453</u>	TATA Communications	↔ peer	
13	701	MCI Communications S	↔ peer	•

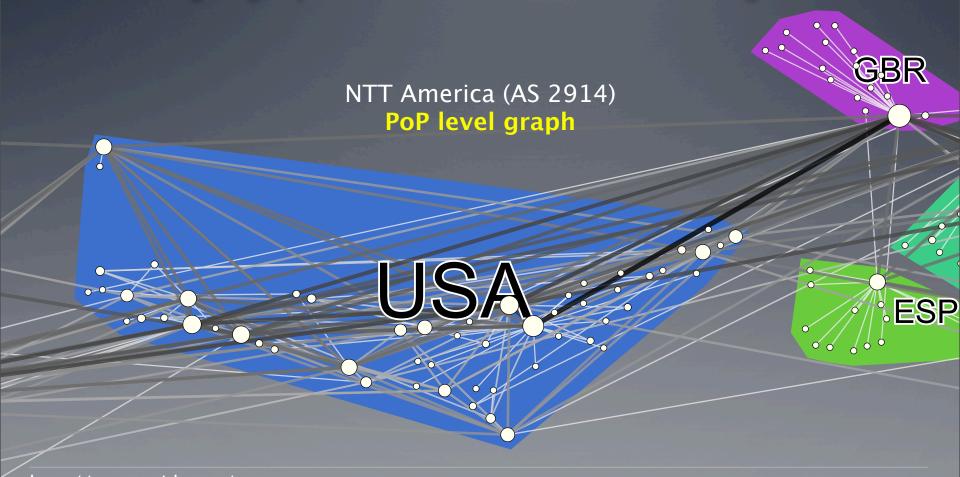
corrections

Disclaimer: We show these corrections as examples of the interface not as actual corrections received by TeliaNet Global Network.

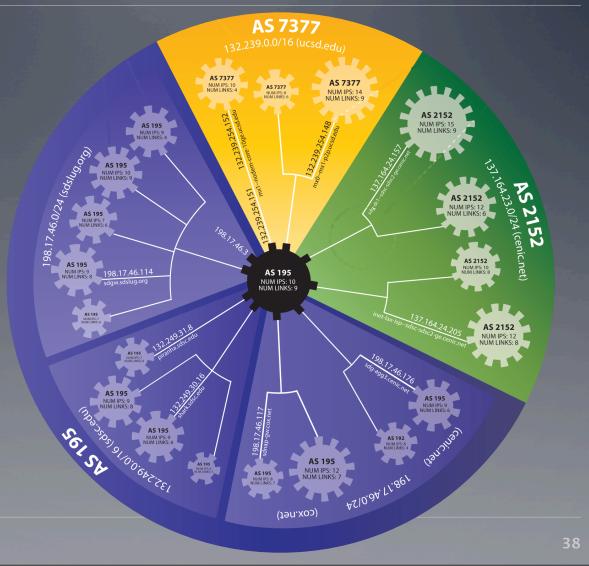

Geolocation Tools Comparison (to support viz and analysis)


- Service evaluation criteria
 - What geographic granularity does it provide?
 - Continent, country, state/prefecture, city, zip code
 - What Internet identifier granularity does it support?
 - IP address, network prefix, Autonomous System (AS)
 - Does accuracy vary by region or type of network?
- We evaluated: Digital Envoy's Netacuity, MaxMind (Free and commercial), IP2Location, Ipligence, and HostIP.info. Quova and Akamai remain unwilling to participate.
- Results generally agreed on IP-address-to-country mappings
 - MaxMind Lite and GeoIP had the highest level of agreement (99.1%)
 - IPligence had the lowest level (94.3%)
 - Finer granularity harder to evaluate
 - Netacuity and MaxMind GeoIP performed "best" in our testing

AS Rank Visualization


Graphical view of providers, peers, and customers

Location Graph


Semi-geographic view of all routers for a given AS

Integrated Visualization of Topological Connectivity

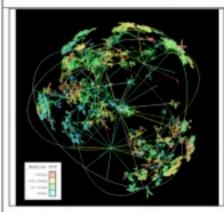
UCSD router (prototype) single router graph

Published Experiments Using Ark

- 1) "Traceroute Probe Method and Forward IP Path Inference", IMC'08.
- 2) "Understanding the efficacy of deployed internet source address validation filtering", IMC'09.
- 3) "Toward Topology Dualism: Improving the Accuracy of AS Annotations for Routers", PAM 2010.
- 4) "The ISMA 2010 AIMS-2 Workshop on Active Internet Measurement Report", ACM SIGCOMM Computer Communication Review (CCR), Sep 2010.
- 5) "Measured impact of crooked traceroute", CCR, Jan 2011.
- 6) "The ISMA 2011 AIMS-3 Workshop on Active Internet Measurement Report", ACM SIGCOMM Computer Communication Review (CCR), July 2011.

Published Experiments Using Ark

- 7) "Geocompare: a comparison of public and commercial geolocation databases", Network Mapping and Measurement Conference, May 2011.
- 8) "Twelve Years in the Evolution of the Internet Ecosystem", IEEE/ACM Transactions on Networking, Sep 2011.
- 9) "Analysis of Country-wide Internet Outages Caused by Censorship", IMC Nov 2011.
- 10) "Efficient Internet Topology Discovery Techniques", Masters Thesis, U. Waikato, Alistair King, 2010.
- 11) "Sustaining the Internet with Hyperbolic Mapping", Nature Communications, Oct 2010.
- 12) "Hyperbolic Geometry of Complex Networks", Physical Review E, Oct 2010.
- **Another 107 articles in Google scholar cite or use data from Ark as of 02 sept 2011.


Delivered Activities

- Deploy 1-2 monitors/month to measure IPv4 and IPv6 topology
- Continue to release and refine ITDK
- Publish alias resolution study and release three versions of code
- Annotated router-level graph visualization and database support
- Topology on demand measurements
- AIMS 2012 Workshop report -> CCR
- AS Rank documentation, validation, new algorithms and interface
- Web-based interface to topo-on-demand service

http://www.caida.org/funding/cybersecurity/

BAA Number: Cyber Security BAA 07-09

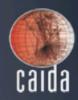
Title: Science and Technology of Internet Topology Mapping

Walrus visualizations of round-trip time measurements made by CAIDA's macroscopic Internet topology monitor located in Herndon, VA, USA.

Technical Approach:

- Expand current deployment of new distributed platform for continuous measurement of Internet topology, performance, state, and other characteristics.
- Use and improve IP alias resolution techniques to identify common routers to which IP interfaces belong.
- Further test and improve performance of software to convert IP technology data into router-level and AS-level graphs.
- Utilize CAIDA's AS relationship and AS taxonomy inference techniques and data infrastructure to annotate AS graphs with AS types and relationships.
- Apply and evaluate publicly available geolocation tools for use in annotating topologies with geographic data.
- Use CAIDA's or other visualization capabilities to depict structure and vulnerability-related characteristics of observed annotated Internet topologies.

Offeror Name: Kimberly Claffy


Date: 06/26/07

Internet Topology Mapping:

- Operational infrastructure to support continuous Internet topology mapping.
- Periodic active probing of 100% of BGP prefixes announced in publicly available routing tables.
- 3. ISP relationship inference with accuracy up to 98%.
- Topologies at the router and AS granularity annotated with AS relationships, AS types, geologations, latencies, etc.
- Empirically grounded quantified understanding of robustness, reliability, scalability and other characteristics of the Internet topology as critical infrastructure.
- Improved annotated topology maps will enhance modeling and monitoring capabilities to help identify threats and predict cascading impacts of damage scenarios.
- Visualization capabilities will provide powerful interface for use by DHS and other national security personnel.

Schedule, Deliverables, Contact Info:

- Current: new active measurement architecture: design complete; prototype implementation being tested.
- 2. Year 1:
 - a. establish on-going IPv4 topology measurements using the new infrastructure;
 - release software for calculation and exhaustive analysis of topology characteristics.
- 3. Year 2:
 - a. weekly updates of router topology with IP aliases resolved using best available techniques;
 - weekly updates of AS/router graphs annotated with inferred AS relationships and types.
- Year 3:
 - a. topology annotated with latencies and geolocations;
 - annotated AS/router topology visualizations,
- POC: Jennifer Ford, UCSD Contracts&Grants, 9500 Gilman Dr. MC 0934, La Jolla, CA 92093-0934 Fax: (858) 534-0280

CAIDA 2011 Annual

http://www.caida.org/home/about/annualreports/2011/

- Research and Infrastructure Projects
- Tools
- Data
- Workshops
- Publications
- Presentations
- Web Site Usage
- Organizational Chart
- Funding Sources
- Operating Expenses

UC San Diego

SDSC